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An iterative procedure is presented which allows for the direct determination of approximate
Brueckner orbitals for small atomic and molecular systems. Starting from the Hartree-Fock deter-
minant one first determines pair natural orbitals (PNOs) of independent electron pairs in the HF-field
of the remaining electrons. The use of the generalized Brillouin-theorem then leads to an approximate
Brueckner orbital for each electron pair. This procedure must be repeated up to self-consistency which
is reached generally after 4—5 macroiterations. Applications to the ground state of H, show how
important the use of Brueckner orbitals is to get good expectation values of one-electron operators and
the correct asymptotic behaviour of the potential energy curve for large internuclear distances.

Es wird eine Iterationsmethode beschrieben, die eine direkte Bestimmung gendherter Brueckner-
orbitale fiir kleine atomare und molekulare Systeme gestattet. Ausgehend von der Hartree-Fock-
Determinante bestimmt man zundchst Paar-NOs (PNOs) der unabhéngigen Elektronenpaare im
HF-Feld der iibrigen Elektronen des Systems. Mit Hilfe des veraligemeinerten Brillouin-Theorems
erhilt man dann ein gendhertes Bruecknerorbital fiir jedes Elektronenpaar. Dies Verfahren muB} bis
zur Selbstkonsistenz wiederholt werden, die man im allgemeinen nach 45 solcher Makroiterationen
erreicht. Anwendung auf den Grundzustand des H,-Molekiils zeigt, wie wichtig die Benutzung von
Bruecknerorbitalen ist, wenn man gute Erwartungswerte von Einelektronenoperatoren und das
richtige asymptotische Verhalten der Potentialkurve bei groen Abstinden erhalten will.

On propose un schéma itératif qui permet le calcul direct des orbitales de Brueckner approchées
pour les atomes et les petites molécules. Partant du déterminant Hartree-Fock on calcule d’abord les
PNO (pair natural orbitals) des paires indépendantes d’électrons dans le champ effectif des autres
électrons dans Papproximation Hartree-Fock. Ensuite le théoréme de Brillouin généralisé permet de
calculer les orbitales de Brueckner approchées pour chaque paire d’electrons. On recommence le
calcul des PNO, la “self-consistance” de cette méthode itérative s’établit en général au bout de 4 ou 5
macroitérations. Les applications a la molécule H, démontrent que l'utilisation d’orbitales de
Brueckner s’impose si 'on s'intéresse a des bonnes valeurs moyennes d’opérateurs monoélectroniques
ou au comportement asymptotique correct des courbes de potentiel aux grandes distances.

1. Introduction

The convenient starting point for a configuration interaction (CI) treatment
of the electronic correlation in atoms and small molecules is a conventional
restricted Hartree-Fock (HF) calculation, yielding the HF-determinant as a

* Dedicated to the memory of Prof. K. H. Hansen.
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reasonable leading configuration and an orthonormal set of occupied and virtual
orbitals from which excited configurations — in the following we shall prefer the
term “substituted configurations” — can be constructed.

The reason to choose this starting point for the Cl-expansion is that the HF-
determinant in many cases is already a good approximation to the wavefunction
of the state under consideration. Only doubly substituted configurations (in the
following abbreviated as DSC’s) contribute largely to the correlation energy, since
because of the Brillouin-theorem [1, 2] the energy contributions of the singly,
triply, and higher substituted configurations vanish in first order. But the choice
of the HF-determinant is unfavourable in two respects:

1. The coefficients of the singly substituted configurations (SSC’s) do not
vanish exactly, so that the HF-determinant despite of being the energetically best
one-determinantal wavefunction has neither the best overlap with the true wave-
function of the system nor the best expectation values of one-electron operators
obtainable with a one-determinantal wavefunction.

2. The HF-wavefunction is a rather poor approximation of the true one
whenever it is degenerate or nearly degenerate with other configurations of the
same symmetry, i.e. whenever the Cl-expansion coefficients of one or more of the
DSC’s are comparable — in absolute value — to that of the HF-determinant. This
happens, for instance, in many molecular systems at large internuclear distances;
we only mention the well known example of H,.

These deficiencies of the HF-determinant can be corrected by the inclusion
of SSC’sinto the Cl-expansion. Equivalently, one can start from the “best-overlap”-
or “Brueckner’-determinant, constructed from the socalled “best-overlap” or
“Brueckner-orbitals” (BO’s) [3—8]. This choice of the leading configuration
guarantees that the coefficients of the SSC’s vanish identically [9], so that they
need not to be included into the Cl-expansion.

More familiar to quantum chemists are the “natural orbitals” (NQO’s) first
introduced by Lowdin [10], which diagonalize the first order density matrix of
the system. It has been noted that the BO’s coincide with the first NO’s in the case
of two electrons [11,12], but this holds only approximately for systems with
more than two electrons [12, 13]. Whenever we are dealing with two electrons
we shall use the terms “Brueckner orbitals” and “first NO’s” synonymously.

Unfortunately, the determination of BO’s and first NO’s is much more com-
plicated than the determination of the HF-orbitals. The reason is that because of
the Brillouin-theorem [1, 2] the matrix elements of the Hamiltonian between the
HF-determinant and the SSC’s vanish. Therefore, the SSC’s interact with the
HF-determinant only indirectly via the DSC’s, thus an expansion including SSC’s
and DSC’s is necessary to determine the BO’s.

The procedures proposed in the literature to construct BO’s for atoms and
molecules can be divided in two classes:

1. If very accurate wavefunctions of the state under consideration are known
the BO’s can be obtained according to the condition that the Brueckner-deter-
minant has maximum overlap with the true wavefunction. But this method
obviously is limited to systems for which sufficiently accurate wavefunctions are
available and has been applied only to two-electron systems [11, 14—18] and to
the Li-atom [12].
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2. For the determination of BO’s without knowledge of a very accurate
wavefunction the conventional CI-expansions or MCSCF procedures are adequate
provided that SSC’s and DSC’s are included simultaneously or that the leading
configuration is reoptimized in the field of the DSC’s. Of the latter type are the
“extended Hartree-Fock” calculations of the Das and Wahl [19-21] yielding
very good potential energy curves for H,, Li,, and F,. Ahlrichs, Kutzelnigg, and
Bingel [22] have calculated the first NO for the He-atom using a “macroiteration”
scheme in which the “correlation potential” leading to the BO is taken into
account iteratively. The same technique has been applied later by Kutzelnigg and
Gélus [23] to calculate the valence shell correlation energy of Li, at large inter-
nuclear. distances, but these authors run into difficulties with non-diagonal
Lagrange multipliers if they want to include higher NO’s of the same symmetry
as the BO.

In this paper we present an alternative method for the direct determination
of BO’s avoiding this difficulty. The BO for a two-electron system is calculated in
a macroiteration procedure using the generalized Brillouin-theorem [24] for
MCSCF-wavefunctions. Each macroiteration cycle contains several micro-
iterations to determine the higher NO’s and the BO as described in Sect. 2a. For
systems with more than two electrons we use the “independent electron pair
approach” (IEPA) with step-by-step determination of “pair-NO’s” or “pseudo-
NO’s” [25] for each individual pair in the HF-field of the remaining electrons as
described by Ahlrichs and Kutzelnigg [26]. In this approximation we obtain a
BO for each pair which should be called “pair-BO” or “pseudo-BO”, analogously
to the higher NO’s. This procedure is similar to the one recently proposed by
Larsson [18].

In Sect. 3 applications to the calculation of one-electron properties of H, at
the equilibrium distance of 1.4 a,, are presented. The errors of expectation values
of some one-electron operators with the HF-determinant, Brueckner-determinant,
and different CI-expansions are compared to the very accurate results of Kolos
and Wolniewicz [27].

Sect. 4 contains results of the calculation of the potential energy curve of H, at
large internuclear distances. A two-configuration wavefunction yields the correct
asymptotic behaviour only if the first determinant is the Brueckner-determinant.

2. The Macroiteration Scheme to Determine Brueckner-Orbitals

a) The Ground State of a Two-Electron System

Let us first consider a two-electron system in its singlet ground state. Let
@, a=1,2..., be a fixed set of orthonormal orbitals where ¢, is the doubly
occupied HF-orbital or an approximation to it.

The normalized wavefunction ¥(1, 2) of the system can be expanded into a
series of Slaterdeterminants

PLY=c;P 4+ Y P+ Y cyDuy 8]

a>1 azf>1
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where @, is the HF-determinant and @, and @, are singly and doubly substituted
configurations (SSC’s and DSC’s, respectively):

D =104 , (2a)
®, = 1—15 {018l + 10u71l} (2b)
o, = % (0uBpl + 1053} - 20)

We shall assume for simplicity that the ¢,, c,4 are real. The expectation value of an
arbitrary operator O with respect to ¥(1, 2) is then given by

(PI0|'P) = ci(#1|012) +2¢; 3 c,(#,|0|D,)

+ 261 Z Caﬂ(¢1 |0‘¢aﬁ) =+ Z Z cacy(¢aloi¢y)
azp a y (3)
+ L Y Caplrs(Dyl012,)

azpyzé

+23 Y ¢,0,5(9,10|D,5).

a y=90

If O is a one-electron operator A, the terms (&, |A|®@,4) vanish. Further, if ¢, is
the HF-orbital and ¢,, a > 1, orthogonal to it, as we have assumed, the Brillouin-
theorem [1, 2] states that

(&, |H|®,)=0 for all @, )
and in most cases the coefficients ¢ in (1) fulfill the relations
e x1; Ccp<l.
Actually, ¢, ¢,5 and ¢, are of zeroth, first and second order, respectively, but here
weare not concerned with a thorough discussion of the relative orders of magnitude

of the terms appearing in (3), which has been given by Grimaldi [28].
With these simplifications the expectation values of A and H become

(PA1Y) = c}(P[A]D,) +2¢, Y. ¢, (P |A| D) + -, (Sa)
(P|\H|¥P) = ci (9, |H| D) + 2c, Zﬂ Cop(P1[H|D,p) + -+~ (5b)

The terms represented by dots are identical to the last three terms in (3). Their
overall contributions to the total expectation values are comparable to those of the
terms linear in c,.

The expressions (5a) and (5b)can be further simplified. If we know the coefficients
¢, of the SSC’s @,, we can perform a linear transformation

1
= {pr+ 5 Lol ©
1 a
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where A" is the normalization constant for the new orbital y}. The Slater-deter-
minant

Z CoaCp ¢aﬁ} @)

A/Z
% = il = {e + Dbt

¢ 1/01 azp
coincides with ¥ as far as @, and the SSC’s are concerned. @] differs from ¥ only
in the DSC’s. This means, that on replacing @, by ¢, we get rid of the SSC’s, or,
staied differently, the choice of & instead of @, makes the coefficients of the SSC’s
vanish. The wavefunction ¥(1, 2) can now be written as

o cl ’ Ctlcﬁ
¥(1,2)= — o+ ) (caﬂ - )‘paﬂ

ash 1/ 2¢, ®)

=P + ZB o5 -
az

According to (6) the orbital y; is not orthogonal to the ¢,, x> 1, therefore the
®,;in (8) are not orthogonal to &; and the expressions for the expectation values
of A and H become more complicated. If we replace the virtual orbitals ¢,, «>1,
by a new set @), x> L, orthogonal to x; and express the &, in terms of these ¢, we
find still remaining SSC’s

' 1 ! = F il
¢a = W {!XI(pal + ’(anII}

with coefficients ¢, roughly proportional to Y c¢,4¢,, Le. generally much smaller
5 :

than the original c,.
Therefore, to construct the correct Brueckner orbital (BO) [3-8] , satisfying
the Brueckner condition [9]

d¢=<¥’

(with the x,, « > 1, orthogonal to y,) an iteration scheme is necessary:

Starting with ¢,, ¢, we determine y according to (6) and a set ¢, orthogonal
to y,. Then we have to determine the new ¢, to perform the transformation (6)
again and so forth.

In quite the same way — ie. by changing the weakly occupied orbitals @,
analogously to (6) — we can get rid of the “non-diagonal” coefficients c,; with
o=+ f§ and end up with the diagonal expansion

Y= dl Tl + Z dua Taa = dl |X1—21| + Z daaerzZzl . (10)

1
Wﬂx;?alﬂx%l})=0 forall o>1 ©)

1t is the well-known “natural expansion” of the wavefunction [29, {17, the orbitals
%, are called “natural orbitals” (NO's) [10]. For the two-electron system the first
NO y, is identical to the Brueckner-orbital [11]. Wavefunctions of type (10) are
nowadays often used in accurate ab-initio calculations because of their simplicity
and rapid convergency.
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The expectation values of 4 and H now read

CAPIRIETACAVIE ARDWEAC MY LN (11a)
(P|H|P) = di (V1 |H|¥)) + 2} did,. (¥, [H|¥,,)

+ 22 Z Aol s (Voo H| W) .
]

(11b)

P, is the one-determinantal wavefunction giving the maximum overlap with ¥
and in most cases the best expectation values of one-electron operators (compare
Sect. 3, [187), but in view of the definition of the HF-orbital ¢, it yields a poorer
energy than @;.

Now our problem is to calculate the coefficients c, for a fixed set of orbitals ¢,
in order to perform the transformation (6) from the MF-orbital to the first NO.
This can be done with some different procedures, the conventional ones are:

a) Carry out a full configuration interaction with all SSC’s @, and all DSC’s
@,;. Because of the Brillouin-theorem the SSC’s do not contribute directly to the
energy, thus, unfortunately, it is necessary to include all the DSC’s, too.

b) Apply second order perturbation theory. Because of the Brillouin-theorem
the first non-vanishing contribution to ¢, is given by an expression like

(D, |H|Py,) (P, |H|Py)

= 12
“= 2 E, ~E,)(E — L) 12

E,, E, and Eg, are the energy expectation values of @, @, and @;,, respectively.
Both these methods are straightforward, but rather tedious, so we looked for
a simpler, alternative procedure. The easiest way seems to use the generalized
Brillouin-theorem [24] in connection with the NO-expansion (10). We shall
describe this method in the following.
Again we start with a HF- or a near HF-solution ¢,. In the first step we cal-
culate approximate NO’s y,, > 1, using the approximation y, = ¢,. We obtain

an expansion B :
V' =cilo il + Y dalrite (13)

analogous to (10), but ¢, still being the HF-orbital and y,, only approximate NO’s.
This first step is described explicitly by Ahlrichs and Kutzelnigg [26, 30], where
one can find all the equations and formulae necessary for the calculation of the
2., and d,.

The remaining error of the expansion (13) — provided that enough terms
lx. %) are included — comes from the approximation y, = ¢,. It can be corrected
by the addition of SSC’s. Let us for instance consider the SSC

1 — o
;= ﬁ {lo1@,] + 10,41} (14)

with a trial orbital ¢, which is chosen to minimize the energy expectation value
of the wavefunction

V' =1l @il + Y dulie Tl + €10 = ¥ + ¢, 9;. (15)
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Obviously the addition of one single SSC &, is sufficient, because c;¢p, with
optimized ¢, and ¢, is completely equivalent to the sum Y c,p, with fixed ¢,
entering into (6). ’

This is a variation problem for both ¢; and ¢,, whereas c;, d,, ¢, ¥, remain
fixed. The only constraint for the variation of ¢, is that it must be orthogonal to
;. This problem is very similar to the HF-problem, and the easiest way to derive
the variational equation. for ¢, is to use the generalized Brillouin-theorem [24].
It states — analogously to the common Brillouin-theorem in (4) — that the “optimal”
orbital ¢, fulfills the equation

(P H|P" (A~ ) =0 (16)

for every ¢, orthogonal to ¢, and ¢,.

In (16) ¥”(A—p) is the function derived from ¥” (15) by replacing ¢, by ¢,
and dropping all determinants not containing ¢,. Written explicitly the condition
for ¢, is

0= (P"|H|P"(A-w)

=1/2¢;(hy, +JL) + /2 Y, doy(h14S, + K3,
E (17)
+ C}.(hiu + J}%y + K}.u)

= (@ 1V 2e;(h+J) @, +1/2Y do K*@y + 1y S
+c,(h+J" +K") ;)

where h is the one-electron part of the Hamilton-operator, S the overlap matrix,
Jiand K’ the Coulomb- and exchange operators of the orbital i, respectively. This
condition can be fulfilled for any ¢, only when ¢, satisfies the following relation

12 {q (h+TY o, + Y dyy[K*0, + hals;c;]}

+ey(h+ T+ KN, =0, .

(18)

This equation is very similar to the equation for the higher NO’s y,, but contains
an inhomogeneous part not depending on ¢, itself. For the solution of such
inhomogeneous eigenvalue equations we use the method of Gabel [31], the
explicit appearance of ¢, in (18) makes an iterative procedure necessary which is
completely analogous to the iterative procedure for the construction of the
approximate NO’s themselves [26]. We shall call this type of iterations micro-
iterations.
With the so determined c; and ¢, we can perform the transformation

1
=¥ o+ s (19

from ¢, to x} which is equivalent to (6). But according to the discussion following
Eq. (8) this y; is not yet the correct BO. Similarly, the y, are not yet the correct
higher NO’s, since they are determined with the approximation y; = ¢, . Therefore,
we have to use a macroiteration procedure: We start with > = ¢,, calculate the
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19 and ¢, perform the transformation (19) to construct a first approximation
11 as described above. This y{ is used to calculate better approximations "
and ¢V for the higher NO’s and so on. To reach self-consistency about 2—5 macro-
iterations are sufficient in our applications.

It is easy to see that our microiteration procedure for the determination of ¢,
and c, corresponds to an optimized fourth order perturbation method. Let us
consider the typical fourth order energy contribution

EP=YY (P, |H|Dy,) (P4, |H| D) (P, 1H|Ds,) (P | H| D1)
* By o¢ (E1 - Eﬂy) (E1 - El) (E1 - Eaa)

(20)

and vary the orbital ¢ occurring in the SSC @, to make |E{"| as large as possible.
Using the abbreviations

_@HIZ,) (@2, o
E, —Eg, E, —E;,
for the terms in (20) not depending on ¢, and noting that the orbital ¢, as a linear
combination of all the ¢,, « > 1, cannot be orthogonal to the ¢, we get after some
manipulations exactly formula (18) for the determination of ¢, with the only
trivial difference, that now also nondiagonal ¢, are occurring.
Our procedure can be summarized by the following floating diagram

Sle-calculation M1

7
— determination of approximate NO’s y, (m])

CI to determine the coefficients d.,

l

determination of ¢, and ¢; (ml)
!
transformation to y;
no

— decision whether MI-self-consistency is reached
|

¥
finaldetermination of the NO’s y, (m])

!
final CI

ml means that for this step microiterations are necessary while MI denotes the
whole macroiteration block.

The advantage of this method seems to be that it is sufficient to determine
only one single optimized function ¢, instead of calculating all the ¢, or instead
of including all the SSC’s into the CI in each MI-step. The determination of ¢,
and ¢, is very fast compared with the calculation of the matrix elements for the CL
In some cases it is possible to simplify the procedure in order to save computation
time:

1. If all the d, in (13) are small compared with ¢, it is sufficient to determine
¢, only once from (18), and to estimate ¢, and the energy contribution of @, per-
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turbationally by

_ (P'H|9,
*~¥EWY_E,’ (222)
AE, ~ (¥'|H|®))c, . (22b)

The recalculation of better y,, d,, etc. does not change the results appreciably in
that case (see, for instance, the equilibrium distance of H,, Sect. 3).

2. Sometimes one can use a reduced basis throughout the whole MI-block.
For instance, in H, at large internuclear separations only the second NO, which
is of a,-type, has a large coefficient and must be included in the MI-procedure
(Sect. 4). Therefore, we can limit ourselves to o-type basis functions in the MI-
block, the z-basis is necessary only for the final determination of all the NO’s.

b) Closed Shell Systems with More than Two Electrons

Within the framework of the IEPA our procedure to construct first natural
orbitals can be applied to closed shell systems with more than two electrons with
slight modifications. Starting from the HF-determinant

D =010 - 9Py (23)

for a 2m-electron system we pick out a pair of electrons occupying the same
spatial orbital, say i. This pair can be treated completely analogous to the two-
electron system in Sect. 2a, the only difference is that it now moves in the HF-field
of the remaining electrons.

We shall not repeat all the details of the procedure, we only describe briefly
the new points of view. Using the appropriate antisymmetrizer </ we can split
@, in the following way

Q1 = ANl Q1B - Pim1 Qi1 - PPl (24)
and replace the pair |@;p;| by an expansion of type (13)

lo:@ —cilo:@il + 3 dual 1] 25)

the index i indicates that we are dealing with pair i. All the other pairs remain
unchanged. The equation that determines the optimal ¢, in the SSC

) 1 A .
®, = — {lo.%] + 10\2:]} (26)
12
now reads
/2 { (F;+TYi+ Y. di[K 0+ (1LIF| 0,) Sxi]}
* 27)
+ i (F,+ T + K 9l = 0%
j#Fi

with Fi=h+ Y (QV—-K). (28)

i=1,n
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This is completely analogous to (18), the only difference is the replacement of h
by the effective one-electron potential F;. The solution of (27) involving micro- and
macroiterations follows exactly the scheme described above for the solution of (18).

It must be noted that the NO’s i, in (25) — including the first NO y; —are NO’s
of the pair i, but not of the whole system. That means, they only diagonalize the
first order density matrix originating from the pair i in the HF-field of the remaining
electrons of the system, but they do not diagonalize the total first order density
matrix. These “pair-NO’s” sometimes are called “pseudo-NO’s” [25] or “quasi-
NO’s” [32]. In the same sense the y} are not the correct Brueckner-orbitals of the
system, but “pair-Brueckner-orbitals”, making vanish only that part of the SSC-
coefficients ¢! originating from DSC’s in the same pair i. We are quite sure that
this is the largest part of the c., but a thorough discussion of this question must
be postponed and can be answered only in connection with the question of the
additivity of pair-correlation energies in the IEPA. As we are dealing with an
effective two-electron system, the “pair-Brueckner-orbitals” coincide with the
first pair-NO’s. Though this does not hold for the true orbitals [7], there is
numerical evidence that they actually deviate very little from one-another [12].

This whole procedure can be carried through for each individual pair
i=1,...,n. But here one more step is necessary: One has to take into account that
after the transformation from g; to y} the field in which the remaining electrons
are moving has changed, too. To reach self-consistency we therefore need a still
higher level of macroiterations: One starts, for instance, with the construction of
¥} in the HF-field of all the other pairs, continues with the construction of y? in
the field of ¥}, @5, ..., ¢,, and so on to y;. Then one corrects ¥}, now in the field of
the just determined yZ, ..., ¥7, and so on up to self-consistency.

3. Expectation Values of One-Electron Operators.
The Quadrupole Moment and Field Gradient of H,

As a first example of the application of our macroiteration procedure we have
calculated the energy and the expectation values of some one-electron operators
for the H,-molecule at its equilibrium distance.

We start from a wavefunction as described in (13), i.e. from a CI-function
containing the SCF-determinant @; and all the DSC’s (or a sufficiently large
number of them), but which does not include the SSC’s. According to Sect. 2
functions of this type generally give good expectation values for the Hamiltonian,
since the SSC’s neglected in (13) have a priori vanishing matrix elements with @,.
But this does not hold for other operators.

Therefore, to get as accurate results for the expectation values of one-electron
operators as for the Hamiltonian we must include the SSC’s or, equivalently, use
the full diagonal expansion (10). Such a wavefunction will give a slightly better
value for the energy, too, for now the matrix elements of the type (SSC|H|DSC)
are also taken into account. How to construct the full diagonal expansion was
shown in Sect. 2.

For the calculation of H, at its equilibrium distance we used an extended
Hoyland-type basis [33] of 45 Gaussian lobe functions contracted to 23 groups
(11o-type, 5n-type and one J-type for both components). This medium-sized basis
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Table 1. CI-function for H, before and after the MI treatment (equilibrium distance)

Before MI After MI
No. Configurations Coefficient Energy Coefficient Energy
contribution contribution
1 0,0, 0.99086 —1.1330952 0.99086 ~1.1329772
2 0,0, —0.10076 —0.016717 —0.10164 —0.017043
3 6,0, —0.05533 —0.007429 ~-0.05474 —0.007355
4,5 n,T, —0.04666 —0.005310 —0.04645 —0.005289
6 6,0, —0.01039 —0.000763 —0.01047 —0.000776
7 0,5, —0.00974 —0.000720 —0.00983 —0.000733
8,9 T, 7, —0.00842 —0.000499 —0.00844 —0.000504
0,11 38,5, —0.00646 —0.000299 —0.00642 —0.000296
12 0,0, ~0.00645 —0.000338 —0.00641 —0.000335
13,14 7,7, —0.00606 —0.000290 —0.00604 —0.000289
15 P, 0.00959 —0.000112 0.000005 0.000000
E o1 —1.171970 —~1.171973

2 All energies in atomic units (a.u.).

should allow for rather good results. Thus, our SCF-energy is about 0.0005 a.u.,
our correlation energy about 0.0019 a.u. poorer than the very accurate results of
Kolos and Roothaan [34].

In Table 1 the results of the calculation of the total energy are summarized.
For each configuration we tabulated the expansion coefficient and the energy
contribution obtained 1) with the wavefunction (13) augmented by one optimized
configuration @, and 2) after the complete MI-procedure (3 macroiterations were
necessary to reach self-consistency to 7 figures in energy). The first configuration
is the SCF-determinant (after MI of course the Brueckner-determinant), the last
configuration the optimized SSC @,, which does not contribute to the energy
after the MI-procedure.

The very small differences between the results before and after the MI show
that it is sufficient in this case just to consider the wavefunction (13) as long as
one is interested only in energies. The contribution of @, — equivalent to all the
SSC’s — is about 3%, of the total correlation energy, an order of magnitude less
than the errors arising from the deficiencies of our basis. And the recalculation
of the higher NOs, i.e. the MI process itself, has almost no effect, it leads to an
energy decrease of about 0.000003 a.u.

This behaviour is independent of the basis, it is merely the consequence of the
smallness of the cocfficients d,, for « > 1, and cannot be expected if one of the d,, is
comparable in its absolute value with d,.

To study the influence of the SSC’s on expectation values of one-electron
operators we considered the operators x? (x being the molecular axis), y?, ¥,
Q =3x?—r? (quadrupole moment of the electron charge distribution) and
F =r~3(3x*—r?) (field gradient of the electron charge distribution, calculated
at the position of the nuclei). We can compare our results for E, {x2>, (>, (Q>
with the very accurate results of Kolos and Wolniewicz [27]; comparison with
experimental data is less valuable because the molecular vibrations are neglected
in our calculations. Also for {F) Kolos-Roothaan-type calculations have been
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done [35], but the result seems not to be accessible to our knowledge. Very
accurate calculations of (F) are necessary to determine the nuclear quadrupole
moment of deuterium by nuclear quadrupole resonance [36].

The first thing we noticed was that our results depend significantly on the
number of DSC’s in the wavefunction. So we have tabulated in Table 2 the expecta-
tion values of the above operators calculated with MI-functions of the increasing
size (1—14 determinants, 3 macroiterations) to test their convergency properties.
The largest relative differences and the relative differences in the last step (from
9-14 determinants) are also given together with the results of Kolos and Wolnie-
wicz [27]. Table 2 shows that all quantities seem to converge to the corresponding
Kolos-Wolniewicz-values in more or less the same way as the energy itself, despite
of the fact that only E varies monotonously.

Table 2. Macroiterated CI wavefunctions for H, (R = 1.44,) with different numbers of configurations.
Convergency test for the energy and some one-electron operators

Number of configurations E (a.u.) (x*> D D Q> {FY
1 (SCF) —1.133095 2.0507 1.5508 5.1522 0.9999 0.3782
2 —1.151543 2.0621 1.5112 5.0844 1.1019 0.3799
3 —1.158925 2.0823 1.5347 5.1516 1.0953 0.3865
5 —1.169147 2.0624 1.5325 5.1274 1.0597 0.3793
9 —1.170885 2.0591 1.5284 5.1159 1.0615 0.3799

14 —1.171973 2.0554 1.5262 5.1079 1.0585 0.3802

Maximum relative 34 15 26 13 91 22

differences (in %y0)

Relative differences in 1 2 1 i 3 1

the last step (in %)

Values of Kolos —1.174470 2.0459 1.5234 5.0927 1.0451

and Wolniewicz [27)]

Table 3. Expectation values of some one-clectron operators, calculated with the different wavefunctions.
In parentheses: Differences with respect to the SCF-expectation value

Wavefunction E(au) (x%) D G ') (FY
(1) SCF-determinant —1.133095 2.0507 1.5508 5.1522 0.9999 0.3782
(2) SCF-determinant —1.171858 2.0667 1.5521 5.1710 1.0291 0.3752
+ 13 DSC’s (+0.0160) (+0.0013) (+0.0188) (+0.0292) (~0.0030)
(3) SCF-determinant 2.0391 1.5253 5.0897 1.0277 0.3834
+ Brueckner term (—00116) (—0.0255) (—0.0625) (+0.0278) (+0.0052)
(4) SCF-determinant —1.171970 2.0562 1.5278 5.1118 1.0569 0.3801
+ 13 DSC’s (+0.0055) (—0.0230) (—0.0404) (+0.0570) (+0.0019)
+ Brueckner term
(5) Contributions of 2.0551 1.5266 5.1085 1.0569 0.3804
(2) and (3) added to (1) (+0.0044) (—0.0242) (—0.0437) (+0.0570) (+0.0022)
(6) 14 determinant —1.171973 2.0554 1.5262 5.1079 1.0585 0.3802
function after (+0.0047) (—0.0246) (—0.0443) (-+0.0586) (+0.0020)

macroiteration
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Table 3 contains the expectation values of the same operators as above, in
different stages of perfection to show the relative order of magnitude of the different
contributions. The wavefunctions are

(1) SCF-determinant,

(2) SCF-determinant and DSC'’s,

(3) SCF-determinant and optimized SSC @, (Brueckner correction),

(4) wavefunction of Table 1 without M1, i.e. CI with SCF-determinant, DSC’s
and @,,

(5) contributions of (2) and (3) simply added to the SCF-result,

(6) full MI-wavefunction of Table 1.

The results of Table 3 show that the MI-treatment does not improve the values
of (4) considerably — the same holds for the energy —, and further that the changes
caused by admixing the DSC’s and the Brueckner correction are to a good degree
additive.

To answer the question whether the SCF- or the Brueckner-determinant
yields better expectation values of one-electron operators we have to distinguish
two cases:

(a) The contributions of the DSC’s and of the Brueckner correction @, to the
expectation value have more or less the same magnitude, but different signs (or
they are both small). In this case the two corrections add up to about zero and the
SCF-determinant gives already a good result. Examples in Table 3: (x2>, {F).

(b) The two corrections have the same sign or they have different signs and
rather different magnitude. Here the SCF-function is no longer a good approxi-
mation for calculating expectation values. Examples: {y>>, (¥*>,{Q>.

As can also be seen in Table 3 generally neither the correction due to the DSC’s
nor the Brueckner correction can be neglected; they contribute both up to 3%
to the expectation values. Since different operators can behave differently and
one does not know signs and magnitudes of the corrections in advance, one has to
calculate (or to estimate) both to ensure that the SCF-values are good not only
by chance.

In agreement with Larsson [18] we can conclude by stating that generally the
Brueckner-determinant yields more accurate expectation values of one-electron
operators than the SCF-determinant. This can be hidden if the corrections due to
the DSC’s and to @, are accidentally of the same magnitude and of different sign,
but such a behaviour cannot be expected in advance.

4. The H, Molecule at Large Internuclear Separations

It is well known that the SCF-method fails to describe the behaviour of the
H, potential energy curve at large internuclear distances, since the system of two
H-atoms changes from a closed-shell state at equilibrium distance R = R, =14 a,
to an open-shell one for R—» . For R = R, the one-determinantal SCF-wave-
function @, = |16,10,] is a good approximation of the exact wavefunction ¥ and
a good starting point for the CI. For R — oo this configuration becomes degenerate
with @, = |16,15,], therefore a wavefunction containing at least these two deter-
minants is necessary to get the correct behaviour of the potential energy curve for

large distances.
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Since the coefficient of @, changes from about —0.1 at R, (see Sect. 3) to
-1 /[/5 at R — o0, its influence backwards on @, increases and it becomes more and
more necessary to change from the SCF-orbital to the first NO. This behaviour
is typical for non-dynamical or degeneracy-type correlation [13]; other examples
are Li, at large internuclear separations [20, 23] or CH, in its lowest 14, state for
nearly linear geometry [37, 38].

With our MI-treatment it is very easy to account for this behaviour. From the
numerical point of view the situation for large distances becomes even more
favourable than for small ones (see Sect. 3), because all higher NO’s — except for
1o, and 1o, — become more and more unimportant, so we can go through all the
MI-block with only the two configurations @, and @,. These two contain only
o-type orbitals, so we can limit our basis for the MI-part of the calculation to
g-type basis functions.

We calculated the potential energy curve for H, in the range from R=14aq,
to R =10.04a, with a Gaussian basis set containing for each atom a 6s-Huzinaga
basis [39] (contracted to 4 groups) augmented by three p-groups (exponents
1.,0.28,0.08) in all three directions. The p,-group with the exponent 0.28 was
uncoupled, so that our complete basis consisted of 48 Gaussian lobe functions
contracted to 160, 67, and 67, groups. For R = R, this basis is poorer than the
one used in Sect. 3, for large R it becomes rather good, the energy of two independ-
ent H-atoms calculated with this basis is —0.999881 a.u. [39].

Before we present the whole potential energy curve we pick out two of its
points to show how differently the MI-procedure works in the two limiting cases
where

a) ¢, ~1,all |¢,|, 2> 1, very small, i.e. for R~ R,

b) |c,] = lc,| & 1/[/5, all |c,|, &> 2, very small, i.e. for large R.

We have chosen the points R=R,=1.44a, and R=5.0a, and summarize
some results in Table 4. In both calculations only the |1g,1g,| configuration is

Table 4. MI-procedure for H, at R =144, and R = 5.0q,

R=14 R=350
Without MI E, = Eyr —1.133135 —0.859051
E, —1.151390 —0.987635
E ., —1.170842 —0.988826
First MI AE, —0.000282 —0.013534
< 0.015337 0.146339
E, —1.132842 —0.847547
E, —1.151667 —1.001515
Number of MI 2 5
Last MI E, —1.132851 —0.836534
E, —1.151667 —1.002728
After MI E, —1.170950 —1.003387
¢ 0.990987 0.793303

Cy —0.100458 —0.608349

All energies in a.u.

12 Theoret. chim. Acta (Berl.) Vol. 24
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included in the MI-treatment which is completely sufficient for R = 5.04a,, but
leads to a small error for R = R, as will be shown later.

Because of this simplification of the MI-treatment the results for R = R, do
not agree completely with those of our former calculation (Sect. 3). 4E;, c;, the
increase in E, and decrease in E, are much larger in Table 4 than in Table 1. But
all these quantities are very small, the gain in the total energy E, , after M1 is about
0.0001 a.u. in both calculations and can be neglected in comparison with the still
remaining error of 0.0035 a.u. For R = 5.0q,, the situation is completely different:
AE,; and c, are large, the decrease in E, and E,; cannot be neglected. Most of the
energy is gained in the first MI, to reach self-consistency to six figures in the energy
five macroiterations are necessary. But because the full basis — including the
n-orbitals —is needed only for E;; and not in the SCF- and MI-steps, the computer
time necessary for the MlI-step is quite small. (For our basis we needed 10 sec for
the evaluation of the integrals, 6 sec for the SCF-calculation, 3 sec for each MI,
and 35 sec for the final determination of the higher NO’s and the CI to calculate
E,;, all for an IBM 360/85.)

Table 5 contains our results for the potential energy curve of H,. For nine
values of R from R = R, to R =10.0 g, we have tabulated the energies E,, E,, and
E,,, calculated in three steps of increasing accuracy, namely:

a) standard CI with doubly substituted NO-configurations, using the approxi-
mation y; = ¢, (first NO = SCF-orbital), i.e. without MI-step;

b) after determination of the first NO y,, i.e. after MI-step, only one DSC is
incorporated in the MI-block;

c) after determination of y,, but the four most important DSC’s incorporated
in the MI-block.

To enable comparison we have included in Table 5 the results of the “double
configuration SCF” (DCSCF)calculation of Bowman, Hirschfelder, and Wahl [21]
which must be compared with our E, of calculation b), and the nearly exact
potential energy curve of Kolos and Wolniewicz [27].

Comparing these different calculations we come to the following conclusions:

1. Neither Eg.pnor E, 5 of calculation a) approaches the correct limit of two
separate H atoms in their ground states (in our basis —0.999881 a.u.) for R— 0.
Thus, the incorrect asymptotic behaviour of the SCF-energy is not fully balanced
by the CI with only DSC’s and the approximation y; = ¢, .

2. After the determination of the first NO (MI-block in b) and c)) the correct
behaviour of E, and E; for large R is obtained. For R —co the difference between
our calculations and those of Kolos and Wolniewicz [27] or Bowman, Hirsch-
felder and Wahl [21] are only due to the deficiency of our Gaussian basis. For
small R our results are poorer, because we did not optimize our basis to give a
good description of the bonding region.

3. For large R the difference between E,; and E, should be equal to the
London dispersion energy [40]. Its leading term is —6.5 R ¢ a.u. [41, 42], while
we got —0.000007 a.u. for R =10.04,.

4. The differences in E, and E,, between the two calculations b) and c) are
rather small, but noticeable for R = R, they become smaller for increasing R, and
are less than 0.000001 a.u. for R = 6.0 a,. (Therefore we did not perform the much
more time consuming calculation c) for R = 6.0a,.) That is due to the fact that the
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coefficients c;, ¢,, c5 of the configurations @,, ®,, and &, — being about —0.05 at
R = R, (compare Table 1) — decrease very rapidly with increasing R, whereas c,
increases from about —0.1 at R = R, to — 1/[/5 for R— 0.

Thus, we can conclude by stating that our MlI-treatment to determine the first
NO enables us to get rather good results even in unfavourable cases, when the
Cl-coefficients of one or more excited configurations are large. Especially, the
behaviour of potential energy curves can be obtained correctly. This is of special
importance for the interaction of atoms or molecules at large internuclear distances.

Acknowledgements. We are indebted to Dr. W. Kutzelnigg, Dr. R. Ahlrichs (Karlsruhe) and
Dr. M. Gélus (Grenoble) for their interest in this work and numerous discussions on this subject. This
work is part of the project Nr. SR 2.120.69 of the ,,Schweizerischer Nationalfond“ and has been sup-
ported in part by the ,Deutsche Forschungsgemeinschaft”.

We thank the computation centers of the “Sandoz AG, Basel” and the ,,Gesellschaft fiir Kern-
forschung mbH, Karlsruhe for their kind assistance in the numerical computations and the Sandoz AG
for a grant of computation time.

References

1. Brillouin,L.: Actualités Sci. et Ind. No. 71 (1933); Nos. 159, 160 (1934).
2. Mgller,C., Plesset,M.S.: Physic. Rev. 46, 618 (1934).
3. Brueckner,K. A, Levinson,C.A.: Physic. Rev. 97, 1344 (1953).
4. — Wada,W.: Physic. Rev. 103, 1008 (1956).
5. Brenig, W.: Nuclear Physics 4, 633 (1957).
6. Primas, H.:In: Modern quantum chemistry, Vol. 2, p. 45. Ed. by O. Sinanoglu. New York: Academic
Press 1965.
7. Kutzelnigg, W., Smith, V. H.,, Jr.: J. chem. Physics 41, 896 (1964).
8. Smith, V.H.,Jr., Kutzelnigg, W.: Ark. Fysik 38, 309 (1968).
9. Nesbet,R.K.: Physic. Rev. 109, 1632 (1958).
10. Léwdin, P.O.: Physic. Rev. 97, 1474 (1955).
11. — Shull,H.: Physic. Rev. 101, 1730 (1956).
12. Larsson,S., Smith, V. H.: Physic. Rev. 178, 137 (1969).
13. Sinanoglu, O., Tuan,D.F.T.: J. chem. Physics 38, 1740 (1963).
14. Shull,H., Léwdin, P.O.: J. chem. Physics 30, 617 (1959).
15. — J. chem. Physics 30, 1405 (1959).
16. Davidson,E.R., Jones,L.L.: J. chem. Physics 37, 2966 (1962).
17. — J. chem. Physics 39, 875 (1963).
18. Larsson,S.: Chem. Physics Letters 7, 165 (1970).
19. Das,G., Wahl,A.C.: J. chem. Physics 44, 87 (1966).
20. — J. chem. Physics 46, 1568 (1967).
21. Bowman,J. D, Jr., Hirschfelder,J. O., Wahl, A.C.: J. chem. Physics 53, 2743 (1970).
22. Ahlrichs,R., Kutzelnigg, W., Bingel, W. A.: Theoret. chim. Acta (Berl) 5, 289 (1966).
23. Kutzelnigg, W., Gélus,M.: Chem. Physics Letters 7, 296 (1970).
24. Levy,B., Berthier, G.: Int. J. quant. Chemistry 2, 307 (1968).
25. Edminston,C., Kraus,M.: J. chem. Physics 45, 1833 (1966).
26. Ahlrichs,R., Kutzelnigg, W.: J. chem. Physics 48, 1819 (1968).
27. Kolos, W., Wolniewicz,L.: J. chem. Physics 43, 2429 (1965).
28. Grimaldi, F.: Advances chem. Physics, Vol. 14, p. 341. London: Interscience 1969.
29. Hurley,A.C., Lennard-Jones,J., Pople,J. A.: Proc. Roy. Soc. (London), A 220, 446 (1953).
30. Kutzelnigg, W.: Theoret. chim. Acta (Berl.) 1, 327, 343 (1963).
31. Gabel,B.: Diplomarbeit (thesis), University of Géttingen, 1970 (unpublished).
32. Jungen,M., Ahlrichs,R.: Theoret. chim. Acta (Berl.) 17, 339 (1970).
33. Hoyland,J.R.: J. chem. Physics 40, 3540 (1964).
34. Kolos, W., Roothaan, C.C.J.: Rev. mod. Physics 32, 219 (1960).



3s.
36.
37.
38.
39.
. Eisenschitz,R., London,F.: Z. Physik 60, 491 (1930).
41.
42,

Brueckner Orbitals in the H, Molecule 169

Aulffray,J. P.: Physic. Rev. Letters 6, 120 (1961).

Newell, G. F.: Physic. Rev. 78, 711 (1950).

Harrison,J.F, Allen,L.C.: J. Amer. chem. Soc. 91, 807 (1969).
O’Neil, S. V., Schifer I1I,H.F., Bender,C.F.: To be published.
Huzinaga, S.: J. chem. Physics 42, 1293 (1965).

Hirschfelder,J. O., Lowdin, P. O.: Molecular Physics 2, 229 (1959).
Dalgarno, A, Davidson, W.D.: Advances in atomic and molecular physics, Vol. 2, p. 1. New York:
Academic Press 1966.

Dr. Martin Jungen Dr. Volker Staemmler

Physikalisch-Chemisches Institut Institut fiir Physikalische Chemie und Elektrochemie
Universitdt Basel Abteilung Theoretische Chemie

KlingelbergstraBe 80 D-75 Karlsruhe, Kaiserstr. 12

CH-4050 Basel, Switzerland Germany



