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An iterative procedure is presented which allows for the direct determination of approximate 
Brueckner orbitals for small atomic and molecular systems. Starting from the Hartree-Fock deter- 
minant one first determines pair natural orbitals (PNOs) of independent electron pairs in the HF-field 
of the remaining electrons. The use of the generalized Brillouin-theorem then leads to an approximate 
Brueckner orbital for each electron pair. This procedure must be repeated up to self-consistency which 
is reached generally after 4-5  macroiterations. Applications to the ground state of H2 show how 
important the use of Brueckner orbitals is to get good expectation values of one-electron operators and 
the correct asymptotic behaviour of the potential energy curve for large internuclear distances. 

Es wird eine Iterationsmethode beschrieben, die eine direkte Bestimmung gen~iherter Brueckner- 
orbitale ftir kleine atomare und molekulare Systeme gestattet. Ausgehend yon der Hartree-Fock- 
Determinante bestimmt man zun~ichst Paar-NOs (PNOs) der unabh~ingigen Elektronenpaare im 
HF-Feld der fibrigen Elektronen des Systems. Mit Hilfe des verallgemeinerten Brillouin-Theorems 
erh~ilt man dann ein gen~ihertes Bruecknerorbital fiir jedes Elektronenpaar. Dies Verfahren muB bis 
zur Selbstkonsistenz wiederholt werden, die man im allgemeinen nach 4-5 solcher Makroiterationen 
erreicht. Anwendung auf den Grundzustand des Hz-Molekfils zeigt, wie wichtig die Benutzung yon 
Bruecknerorbitalen ist, wenn man gute Erwartungswerte yon Einelektronenoperatoren und das 
richtige asymptotische Verhalten der Potentialkurve bei grogen Abst~inden erhalten will. 

On propose un sch6ma it6ratif qui permet le calcul direct des orbitales de Brueckner approch6es 
pour les atomes et les petites mol6cules. Partant du d6terminant Hartree-Fock on calcule d'abord les 
PNO (pair natural orbitals) des paires ind6pendantes d'61ectrons dans le champ effectif des autres 
61ectrons dans l'approximation Hartree-Fock. Ensuite le th6or6me de Brillouin g6n6ralis6 permet de 
calculer les orbitales de Brueekner approch6es pour chaque paire d'electrons. On recommence le 
calcul des PNO, la "self-consistance" de cette m6thode it~rative s'6tablit en g6n6ral au bout de 4 ou 5 
macroit6rations. Les applications ~ la mol6cule H 2 d~montrent que l'utilisation d'orbitales de 
Brueckner s'impose si l'on s'int6resse/t des bonnes valeurs moyennes d'op6rateurs mono61ectroniques 
ou au comportement asymptotique correct des courbes de potentiel aux grandes distances. 

1. Introduction 

T h e  c o n v e n i e n t  s t a r t i n g  p o i n t  for  a c o n f i g u r a t i o n  i n t e r a c t i o n  (CI)  t r e a t m e n t  

o f  t h e  e l e c t r o n i c  c o r r e l a t i o n  in  a t o m s  a n d  s m a l l  m o l e c u l e s  is a c o n v e n t i o n a l  

r e s t r i c t e d  H a r t r e e - F o c k  ( H F )  c a l c u l a t i o n ,  y i e l d i n g  t h e  H F - d e t e r m i n a n t  as  a 

* Dedicated to the memory of Prof. K. H. Hansen. 



Brueckner Orbitals in the H2 Molecule 153 

reasonable leading configuration and an orthonormal set of occupied and virtual 
orbitals from which excited configurations - in the following we shall prefer the 
term "substituted configurations" - can be constructed. 

The reason to choose this starting point for the CI-expansion is that the HF- 
determinant in many cases is already a good approximation to the wavefunction 
of the state under consideration. Only doubly substituted configurations (in the 
following abbreviated as DSC's) contribute largely to the correlation energy, since 
because of the Brillouin-theorem [1, 2] the energy contributions of the singly, 
triply, and higher substituted configurations vanish in first order. But the choice 
of the HF-determinant is unfavourable in two respects: 

1. The coefficients of the singly substituted configurations (SSC's) do not 
vanish exactly, so that the HF-determinant despite of being the energetically best 
one-determinantal wavefunction has neither the best overlap with the true wave- 
function of the system nor the best expectation values of one-electron operators 
obtainable with a one-determinantal wavefunction. 

2. The HF-wavefunction is a rather poor approximation of the true one 
whenever it is degenerate or nearly degenerate with other configurations of the 
same symmetry, i.e. whenever the CI-expansion coefficients of one or more of the 
DSC's are comparable - in absolute value - to that of the HF-determinant. This 
happens, for instance, in many molecular systems at large internuclear distances; 
we only mention the well known example of H 2. 

These deficiencies of the HF-determinant can be corrected by the inclusion 
of SSC's into the Cl-expansion. Equivalently, one can start from the "best-overlap"- 
or "Brueckner"-determinant, constructed from the socalled "best-overlap" or 
"Brueckner-orbitals" (BO's) [3-8] .  This choice of the leading configuration 
guarantees that the coefficients of the SSC's vanish identically [9], so that they 
need not to be included into the CI-expansion. 

More familiar to quantum chemists are the "natural orbitals" (NO's) first 
introduced by L6wdin [10], which diagonalize the first order density matrix of 
the system. It has been noted that the BO's coincide with the first NO's in the case 
of two electrons [11, 12], but this holds only approximately for systems with 
more than two electrons [12, 13]. Whenever we are dealing with two electrons 
we shall use the terms "Brueckner orbitals" and "first NO's" synonymously. 

Unfortunately, the determination of BO's and first NO's is much more com- 
plicated than the determination of the HF-orbitals. The reason is that because of 
the Brillouin-theorem [1, 2] the matrix elements of the Hamiltonian between the 
HF-determinant and the SSC's vanish. Therefore, the SSC's interact with the 
HF-determinant only indirectly via the DSC's, thus an expansion including SSC's 
and DSC's is necessary to determine the BO's. 

The procedures proposed in the literature to construct BO's for atoms and 
molecules can be divided in two classes: 

1. If very accurate wavefunctions of the state under consideration are known 
the BO's can be obtained according to the condition that the Brueckner-deter- 
minant has maximum overlap with the true wavefunction. But this method 
obviously is limited to systems for which sufficiently accurate wavefunctions are 
available and has been applied only to two-electron systems [11, 14-18] and to 
the Li-atom [12]. 
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2. For the determination of BO's without knowledge of a very accurate 
wavefunction the conventional CI-expansions or MCSCF procedures are adequate 
provided that SSC's and DSC's are included simultaneously or that the leading 
configuration is reoptimized in the field of the DSC's. Of the latter type are the 
"extended Hartree-Fock" calculations of the Das and Wahl [19-21] yielding 
very good potential energy curves for Ha, Li2, and F 2. Ahlrichs, Kutzelnigg, and 
Bingel [22] have calculated the first NO for the He-atom using a "macroiteration" 
scheme in which the "correlation potential" leading to the BO is taken into 
account iteratively. The same technique has been applied later by Kutzelnigg and 
G61us [23] to calculate the valence shell correlation energy of Li 2 at large inter- 
nuclear distances, but these authors run into difficulties with non-diagonal 
Lagrange multipliers if they want to include higher NO's of the same symmetry 
as the BO. 

In this paper we present an alternative method for the direct determination 
of BO's avoiding this difficulty. The BO for a two-electron system is calculated in 
a macroiteration procedure using the generalized Brillouin-theorem [24] for 
MCSCF-wavefunctions. Each macroiteration cycle contains several micro- 
iterations to determine the higher NO's and the BO as described in Sect. 2a. For 
systems with more than two electrons we use the "independent electron pair 
approach" (IEPA) with step-by-step determination of "pair-NO's" or "pseudo- 
NO's" [25] for each individual pair in the HF-field of the remaining electrons as 
described by Ahlrichs and Kutzelnigg [26]. In this approximation we obtain a 
BO for each pair which should be called "pair-BO" or "pseudo-BO", analogously 
to the higher NO's. This procedure is similar to the one recently proposed by 
Larsson [18]. 

In Sect. 3 applications to the calculation of one-electron properties of H 2 at 
the equilibrium distance of 1.4 a o are presented. The errors of expectation values 
of some one-electron operators with the HF-determinant, Brueckner-determinant, 
and different CI-expansions are compared to the very accurate results of Kolos 
and Wolniewicz [27]. 

Sect. 4 contains results of the calculation of the potential energy curve of H 2 at 
large internuclear distances. A two-configuration wavefunction yields the correct 
asymptotic behaviour only if the first determinant is the Brueckner-determinant. 

2. The Macroiteration Scheme to Determine Brueckner-Orbitals 

a) The Ground State of a Two-Electron System 

Let us first consider a two-electron system in its singlet ground state. Let 
q~, ~ = 1, 2 .... be a fixed set of orthonormal orbitals where qh is the doubly 
occupied HF-orbital or an approximation to it. 

The normalized wavefunction T(1, 2) of the system can be expanded into a 
series of Slaterdeterminants 

~(1 ,2 )=qv~+ Y~ c ~ +  Y~ c~pa,~ (1) 
~t>l ~r 
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where ~a is the HF-determinant and ~,  and 4~,a are singly and doubly substituted 
configurations (SSC's and DSC's, respectively): 

~1 = I~px~pal ,  (2a)  

e _  1_ 
- V~ {l~p~l + [(pSpxl}, (2b) 

1 
4 ~  = ~ {Iq)~Cp~ I + [q~aCp~l}. (2c) 

We shall assume for simplicity that the c,, c~a are real. The expectation value of an 
arbitrary operator O with respect to T(1, 2) is then given by 

(TIO[ 79 = c~Z (~1101~1) + 2 q  ~ c~(~ 1 [Ol~)  

~>--a ~ r (3) 

If O is a one-electron operator A, the terms (~b 1 [AL~=p) vanish. Further, if r is 
the HF-orbital  and q~=, e > 1, orthogonal to it, as we have assumed, the Brillouin- 
theorem [1, 2] states that 

(~1 [HI ~ )  = 0 for all ~ (4) 

and in most cases the coefficients c in (1) fulfill the relations 

c~ ~ 1; c~, c~p ,~ 1. 

Actually, c~, c~a and c~ are of zeroth, first and second order, respectively, but here 
we are not concerned with a thorough discussion of the relative orders of magnitude 
of the terms appearing in (3), which has been given by Grimaldi 1-28]. 

With these simplifications the expectation values of A and H become 

(TIAI 79 = c~(~  Ial~x) + 2 q  ~ c~(~ Ialr + " . ,  (5a) 

(TIHI 79 -= c~(~11HI~) + 2 q  ~ c~a(~ 1 [BiOta) + ' - .  (5b) 
~__># 

The terms represented by dots are identical to the last three terms in (3). Their 
overall contributions to the total expectation values are comparable to those of the 
terms linear in c 1. 

The expressions (5 a) and (5 b) can be further simplified. If we know the coefficients 
c~ of the SSC's ~b~, we can perform a linear transformation 

)~[ = sg'{~o~ + 1 ,6, 
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where Ar is the normalization constant for the new orbital )~. The Slater-deter- 
minant 

, } 
�9 i = Izi~iI = c~ c,r + y c ,  l /2q ~>=~ ~ c~ca~,s (7) 

coincides with T as far as ~1 and the SSC's are concerned. ~i differs from T only 
in the DSC's. This means, that on replacing ~ by q)'t we get rid of the SSC's, or, 
slated differently, the choice of ~i instead of ~b t makes the coefficients of the SSC's 
vanish. The wavefunction T(1, 2) can now be written as 

C~s ) 
~e(1,2)= c~ '~i+ Y~ c,~ l /~e ' ~,~ ,~2 a>fl (8) 

According to (6) the orbital Zi is not orthogonal to the ~o,, c~ > 1, therefore the 
~ n  in (8) are not orthogonal to ~i and the expressions for the expectation values 
of A and /4  become more complicated. If we replace the virtual orbitais ~0~ ~ > 1, 
by a new set co', ~ > t, orthogonal to ~(~ and express the r  in terms of these r  
find still remaining SSC's 

1 f t --, t --t 

with coefficients c', roughly proportional to ~ c~oco, i.e. generally much smaller 

than the original % 
Therefore, to construct the correct Brueckner orbital (BO) [3-8] )fi satisfying 

the Brueckner condition [9] 

( t '  t d~= g~ ~ - ( l X t ~ , t + [ Z ~ t l }  =13 for all c~>l (9) 

(with the Z~, e > 1, orthogonal to )fi) an iteration scheme is necessary: 
Starting with qh, q~ we determine Zl according to (6) and a set ~0~ orthogonal 

to Zl- Then we have to determine the new c'~ to perform the transformation (6) 
again and so forth. 

In quite the same way - Le. by changing the weakly occ\lpied orbitats ~p~ 
analogously to (6) - we can get rid of the "non-diagonal" coefficients c~p with 

+ fl and end up with the diagonal expansion 

It is the well-known "natural  expansion" of t}~e wavefunction [29, 11 ], the orbita!.s 
Z~ are called "natural orbitals" (NO's) [10]. For the two-electron system the first 
NO I1 is identical to the Brueckner-orbital [11]. Wavefunctions of type (10) are 
nowadays often used in accurate ab-initio calculations because of their simplicity 
and rapid convergency. 
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The expectation values of A and H now read 

(7~1A I ~) = d~(~l IAI 7'1) + ~ d2~(T~[a[ T j ,  ( l la)  

(~lHI 7 ~) = d2 (7'11H[ ~1) + 2 ~  dld~=(~t'l IHI 7J==) 
( l ib)  

+ 22 Z dJpB(~e,~IHI !eBB)" 
B 

kg 1 is the one-determinantal wavefunction giving the maximum overlap with 
and in most cases the best expectation values of one-electron operators (compare 
Sect. 3, [18]), but in view of the definition of the HF-orbital qh it yields a poorer 
energy than ~b a. 

Now our problem is to calculate the coefficients c= for a fixed set of orbitals (p= 
in order to perform the transformation (6) from the MF-orbital to the first N O. 
This can be done with some different procedures, the conventional ones are: 

a) Carry out a full configuration interaction with all SSC's ~= and all DSC's 
q~=B- Because of the Brillouin-theorem the SSC's do not contribute directly to the 
energy, thus, unfortunately, it is necessary to include all the DSC's, too. 

b) Apply second order perturbation theory. Because of the Brillouin-theorem 
the first non-vanishing contribution to c= is given by an expression like 

(~11HI 4~Bv) (~bBylH[ ~1) 
c , :  2 ~ ; : ~  �9 (12) 

By 

El, E~ and E,~ are the energy expectation values of ~1, ~,  and ~ y ,  respectively. 
Both these methods are straightforward, but rather tedious, so we looked for 

a simpler, alternative procedure. The easiest way seems to use the generalized 
Brillouin-theorem [24] in connection with the NO-expansion (10). We shall 
describe this method in the following. 

Again we start with a HF- or a near HF-solution qh. In the first step we cal- 
culate approximate NO's )(~, ~ > 1, using the approximation )fi -- qh- We obtain 
an expansion 

~e' = cl I~01 ~11 + Y~ dLIx'~'~l (13) 
dr 

analogous to (10), but ~Pl still being the HF-orbital and Z'~ only approximate NO's. 
This first step is described explicitly by Ahlrichs and Kutzelnigg [26, 30], where 
one can find all the equations and formulae necessary for the calculation of the 
Z'~ and d'~. 

The remaining error of the expansion (13) - provided that enough terms 
Ix'~'~l are included - comes from the approximation ~(1 = qol. It can be corrected 
by the addition of SSC's. Let us for instance consider the SSC 

1 
0~ -- ~-{l~01cp~[ + I~0~11} (14) 

with a trial orbital q)z, which is chosen to minimize the energy expectation value 
of the wavefunction 

'f'" = c11q)~Coll + ~ dLlx'~ ZI  + c~,~ = ~" + c~,I,~. (15) 
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Obviously the addition of one single SSC ~ is sufficient, because c~q~z with 
optimized cz and q~x is completely equivalent to the sum ~ c~0~ with fixed q~ 

entering into (6). 
This is a variation problem for both cx and q~a, whereas cl, d~, qh, X'~ remain 

fixed. The only constraint for the variation of q~z is that it must be orthogonal to 
~ol. This problem is very similar to the HF-problem, and the easiest way to derive 
the variational equation for q~x is to use the generalized Brillouin-theorem [24]. 
It states- analogously to the common Brillouin-theorem in (4)- that the "optimal" 
orbital q~x fulfills the equation 

(~"[H[ W"(2~p)) = 0 (16) 

for every ~p, orthogonal to q~l and q~x. 
In (16) ~g"(2~#) is the function derived from ~" (15) by replacing q~z by q~, 

and dropping all determinants not containing q~z. Written explicitly the condition 
for q~x is 

0 = (~'IHI ~'(2--,#)) 

(17) 
+ + J1. + KL) 

= I 1/2c1(h + V5 + 
Cz 

+c~(h +j1  + K1)q~) 

where h is the one-electron part of the Hamilton-operator, S the overlap matrix, 
J~ and K ~ the Coulomb- and exchange operators of the orbital i, respectively. This 
condition can be fulfilled for any ~0u only when ~0~ satisfies the following relation 

J (18) 
+ cz(h + J~ + Ir = #zq~z. 

This equation is very similar to the equation for the higher NO's Z~, but contains 
an inhomogeneous part not depending on ~pz itself. For the solution of such 
inhomogeneous eigenvalue equations we use the method of Gabel [31], the 
explicit appearance of cz in (18) makes an iterative procedure necessary which is 
completely analogous to the iterative procedure for the construction of the 
approximate NO's themselves [26]. We shall call this type of iterations micro- 
iterations. 

With the so determined cx and q~ we can perform the transformation 

1 
Z~ = .A~{q h + ~ 1 1 -  c~o~} (19) 

from (p~ to Z~ which is equivalent to (6). But according to the discussion following 
Eq. (8) this Z~ is not yet the correct BO. Similarly, the 9(~ are not yet the correct 
higher NO's, since they are determined with the approximation Z~ = ~ol. Therefore, 
we have to use a macroiteration procedure: We start with Z(~ ~ = qh, calculate the 
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Z~ ~ and ~0(~ ~ perform the transformation (19) to construct a first approximation 
~(~a) as described above. This X] a) is used to calculate better approximations X~ a) 
and ~0] 1) for the higher NO's and so on. To reach self-consistency about 2 -5  macro- 
iterations are sufficient in our applications. 

it  is easy to see that our microiteration procedure for the determination of q~A 
and c A corresponds to an optimized fourth order perturbation method. Let us 
consider the typical fourth order energy contribution 

E ?  ) = ~ Z (~1 IHI~p~) (~a~IHI~A)(~AIHI~03 ( ~ I H I ~ I )  (20) 
p~ ~, (E a - E~) (El - EA) (El - E~) 

and vary the orbital ~0A occurring in the SSC Oz to make [E~4)[ as large as possible. 
Using the abbreviations 

(~a IHI ~ )  (85 lHl ~ )  c6~ - (21) 
cp~-  E 1-E#~ ' E 1 - E ~  

for the terms in (20) not depending on ~p~ and noting that the orbital tpx as a linear 
combination of all the q~,, ~ > 1, cannot be orthogonal to the ~0, we get after some 
manipulations exactly formula (18) for the determination of q~A with the only 
trivial difference, that now also nondiag0nal cBv are occurring. 

Our procedure can be summarized by the following floating diagram 

SCF-calculation MI 

1 
--* determination of approximate NO's X'~ (mI) 

CI to determine the coefficients d',~ 
$ 

determination of q~A and cA (mI) 
$ 

transformation to X~ 
no J, 
- -  decision whether MI-self-consistency is reached 

1 
finaldetermination of the NO's Z~ (mI) 

final CI 

mI means that for this step microiterations are necessary while MI denotes the 
whole macroiteration block. 

The advantage of this method seems to be that it is sufficient to determine 
only one single optimized function q~A instead of calculating all the c, or instead 
of including all the SSC's into the' CI in each MI-step. The determination of q~A 
and c A is very fast compared with the calculation of the matrix elements for the CI. 
In some cases it is possible to simplify the procedure in order to save computation 
time: 

1. If all the d'~, in (13) are small compared with c a it is sufficient to determine 
q~ only once from (18), and to estimate cz and the energy contribution of ~A per- 
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turbationally by 

(7~'IHI qia) (22a) 
c~ ~ E(kg') - E~ ' 

AEz ~ (SU'lHl@x)cz. (22b) 

The recalculation of better ;~',, d',~ etc. does not change the results appreciably in 
that case (see, for instance, the equilibrium distance of H2, Sect. 3). 

2. Sometimes one can use a reduced basis throughout the whole MI-block. 
For instance, in Hz at large internuclear separations only the second NO, which 
is of o-,-type, has a large coefficient and must be included in the MI-procedure 
(Sect. 4). Therefore, we can limit ourselves to o'-type basis functions in the MI- 
block, the To-basis is necessary only for the final determination of all the NO's. 

b) Closed Shell Systems with More than Two Electrons 

Within the framework of the IEPA our procedure to construct first natural 
orbitals can be applied to closed shell systems with more than two electrons with 
slight modifications. Starting from the HF-determinant 

~1 = ]qh~l ... q),~,l (23) 

for a 2n-electron system we pick out a pair of electrons occupying the same 
spatial orbital, say i. This pair can be treated completely analogous to the two- 
electron system in Sect. 2a, the only difference is that it now moves in the HF-field 
of the remaining electrons. 

We shall not repeat all the details of the procedure, we only describe briefly 
the new points of view. Using the appropriate antisymmetrizer d we can split 
~1 in the following way 

~1 = d~[q)i~i]" k01~l " "  ~i-lq)i+l ' "  q)n~n] (24) 

and replace the pair IcPi@[ by an expansion of type (13) 

i i--i I~o~,l---,cl Iq~i~,l + F~ d~lz~z~[ (25) 

the index i indicates that we are dealing with pair i. All the other pairs remain 
unchanged. The equation that determines the optimal rp~ in the SSC 

~ =  1 ~ i -  ~ -  {[~o/~1 + [~o~oil } (26) 

now reads 

with 

(27) 
+ c~(r~ + si + K')~o~ = ~i~0~ 

j~i  
F i - =  h + ~ (2J j - -  KJ). (28) 

j = l , n  
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This is completely analogous to (18), the only difference is the replacement of h 
by the effective one-electron potential Fi. The solution of (27) involving micro- and 
macroiterations follows exactly the scheme described above for the solution of (18). 

It must be noted that the NO's Z~ in (25) - including the first NO X~ - are NO's 
of the pair i, but not of the whole system. That means, they only diagonalize the 
first order density matrix originating from the pair i in the HF-field of the remaining 
electrons of the system, but they do not diagonalize the total first order density 
matrix. These "pair-NO's" sometimes are called "pseudo-NO's" [25] or "quasi- 
NO's" [32]. In the same sense the X] are not the correct Brueckner-orbitals of the 
system, but "pair-Brueckner-orbitals", making vanish only that part of the SSC- 
coefficients c~ originating from DSC's in the same pair i. We are quite sure that 
this is the largest part of the c~, but a thorough discussion of this question must 
be postponed and can be answered only in connection with the question of the 
additivity of pair-correlation energies in the IEPA. As we are dealing with an 
effective two-electron system, the "pair-Brueckner-orbitals" coincide with the 
first pair-NO's. Though this does not hold for the true orbitals [7], there is 
numerical evidence that they actually deviate very little from one-another [-12]. 

This whole procedure can be carried through for each individual pair 
i = 1, ..., n. But here one more step is necessary: One has to take into account that 
after the transformation from qh to Z] the field in which the remaining electrons 
are moving has changed, too. To reach self-consistency we therefore need a still 
higher level of macroiterations: One starts, for instance, with the construction of 
;~ in the HF-field of all the other pairs, continues with the construction of Z2 in 
the field of Z~, q~3, ---, %,  and so on to X~. Then one corrects Z~, now in the field of 
the just determined X~ . . . . .  ZT, and so on up to self-consistency. 

3. Expectation Values of One-Electron Operators. 
The Quadrupole Moment and Field Gradient of H 2 

As a first example of the application of our macroiteration procedure we have 
calculated the energy and the expectation values of some one-electron operators 
for the Hz-molecule at its equilibrium distance. 

We start from a wavefunction as described in (13), i.e. from a CI-function 
containing the SCF-determinant ~1 and all the DSC's (or a sufficiently large 
number of them), but which does not include the SSC's. According to Sect. 2 
functions of this type generally give good expectation values for the Hamiltonian, 
since the SSC's neglected in (13) have a priori vanishing matrix elements with ~l- 
But this does not hold for other operators. 

Therefore, to get as accurate results for the expectation values of one-electron 
operators as for the Hamiltonian we must include the SSC's or, equivalently, use 
the full diagonal expansion (10). Such a wavefunction will give a slightly better 
value for the energy, too, for now the matrix elements of the type (SSC IHI DSC) 
are also taken into account. How to construct the full diagonal expansion was 
shown in Sect. 2. 

For  the calculation of H 2 at its equilibrium distance we used an extended 
Hoyland-type basis [-33] of 45 Gaussian lobe functions contracted to 23 groups 
( l la- type,  57r-type and one 6-type for both components). This medium-sized basis 
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Table 1. CI-functionfor H 2 before and ahertheMItreatment(equilibfiumdistance) 

Before MI After MI 
No. Configurations Coefficient Energy Coefficient Energy 

contribution contribution 

1 a0~g 0.99086 -1.133095 a 0.99086 -1.132977" 
2 au~ u -0.10076 -0.016717 -0.10164 -0.017043 
3 ao~ o -0.05533 -0.007429 -0.05474 -0.007355 
4, 5 ~u~u -0.04666 -0.005310 -0.04645 -0.005289 
6 a,~, -0.01039 -0.000763 -0.01047 -0.000776 
7 ag~ o -0.00974 -0.000720 -0.00983 -0.000733 
8,9 ~g~0 -0.00842 -0.000499 -0.00844 -0.000504 
0,11 606 a -0.00646 -0.000299 -0.00642 -0.000296 

12 agog -0.00645 -0.000338 -0.00641 -0.000335 
13, 14 ~,~, -0.00606 -0.000290 -0.00604 -0.000289 
15 ~z 0.00959 -0.000112 0.000005 0.000000 

Etkto I - -  1.171970 - 1.171973 

a All energies in atomic units (a.u.). 

should allow for rather good results. Thus, our SCF-energy is about 0.0005 a.u., 
our correlation energy about 0.0019 a.u. poorer than the very accurate results of 
Kolos and Roothaan [-34]. 

In Table 1 the results of the calculation of the total energy are summarized. 
For  each configuration we tabulated the expansion coefficient and the energy 
contribution obtained 1) with the wavefunction (13) augmented by one optimized 
configuration ~z and 2) after the complete MI-procedure (3 macroiterations were 
necessary to reach self-consistency to 7 figures in energy). The first configuration 
is the SCF-determinant (after MI of course the Brueckner-determinant), the last 
configuration the optimized SSC ~ ,  which does not contribute to the energy 
after the MI-procedure. 

The very small differences between the results before and after the MI show 
that it is sufficient in this case just to consider the wavefunction (13) as long as 
one is interested only in energies. The contribution of ~ - equivalent to al l  the 
SSC's - is about 3O/oo of the total correlation energy, an order of magnitude less 
than the errors arising from the deficiencies of our basis. And the recalculation 
of the higher NO's,  i.e. the MI process itself, has almost no effect, it leads to an 
energy decrease of about 0.000003 a.u. 

This behaviour is independent of the basis, it is merely the consequence of the 
smallness of the coefficients d~ for e > 1, and cannot be expected if one of the d,, is 
comparable in its absolute value with dl. 

To study the influence of the SSC's on expectation values of one-electron 
operators we considered the operators x 2 (x being the molecular axis), y2, r2, 
Q = 3x 2 - v  2 (quadrupole moment of the electron charge distribution) and 
F = r-5(3x 2 - r  e) (field gradient of the electron charge distribution, calculated 
at the position of the nuclei). We can compare our results for E, (x2),  (y2) ,  ( Q )  
with the very accurate results of Kolos and Wolniewicz [27]; comparison with 
experimental data is less valuable because the molecular vibrations are neglected 
in our calculations. Also for ( F )  Kolos-Roothaan-type calculations have been 
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done [35], but the result seems not to be accessible to our knowledge. Very 
accurate calculations of ( F )  are necessary to determine the nuclear quadrupole 
moment of deuterium by nuclear quadrupole resonance [36]. 

The first thing we noticed was that our results depend significantly on the 
number of DSC's in the wavefunction. So we have tabulated in Table 2 the expecta- 
tion values of the above operators calculated with MI-functions of the increasing 
size (1-14 determinants, 3 macroiterations) to test their convergency properties. 
The largest relative differences and the relative differences in the last step (from 
9-14 determinants) are also given together with the results of Kolos and Wolnie- 
wicz [27]. Table 2 shows that all quantities seem to converge to the corresponding 
Kolos-Wolniewicz-values in more or less the same way as the energy itself, despite 
of the fact that only E varies monotonously. 

Table 2. Macroiterated CI wavefunctions for H 2 (R = 1.4a0) with different numbers of configurations. 
Convergency test for the energy and some one-electron operators 

Number of configurations E(a.u.) (x z) (y2) (r2) ((2) ( F )  

1 (SCF) - 1.133095 2.0507 1.5508 5.1522 0.9999 0.3782 
2 - 1.151543 2.0621 1.5112 5.0844 1.1019 0.3799 
3 - 1.158925 2.0823 1.5347 5.1516 1.0953 0.3865 
5 - 1.169147 2.0624 1.5325 5.1274 1.0597 0.3793 
9 -1.170885 2.0591 1.5284 5.1159 1.0615 0.3799 

14 - 1.171973 2.0554 1.5262 5.1079 1.0585 0.3802 

Maximum relative 34 15 26 13 91 22 
differences (in ~ 

Relative differences in 1 2 1 1 3 1 
the last step (in ~ 

Values of Kolos - 1.174470 2.0459 1.5234 5.0927 1.0451 
and Wolniewicz [27] 

Table 3. Expectation values of some one-electron operators, calculated with the different wavefunctions. 
In parentheses: Differences with respect to the SCF-expectation value 

Wavefunction E (a.u.) ( x  2 ) (j: 2 ) ( r  2 ) ( Q )  ( F )  

(1) SCF-determinant - 1.133095 2.0507 1.5508 5.1522 0.9999 0.3782 

(2) SCF-determinant - 1.171858 2.0667 1,5521 5.1710 1.0291 0.3752 
+ 13 DSC's (+0.0160) (+0,0013) (+0.0188) (+0.0292) (-0.0030) 

(3) SCF-determinant 2.0391 1,5253 5.0897 1.0277 0.3834 
+ Brueckner term (-0:0116) (-0.0255) (-0.0625) (+0.0278) (+0.0052) 

(4) SCF-determinant - 1.171970 2.0562 1.5278 5.1118 1.0569 0.3801 
+ 13 DSC's (+0.0055) (-0.0230) (-0.0404) (+0.0570) (+0.0019) 
+ Brueckner term 

(5) Contributions of 2.0551 1.5266 5.1085 1.0569 0.3804 
(2) and (3) added to (1) (+0.0044) (-0.0242) (-0.0437) (+0.0570) (+0.0022) 

(6) 14 determinant - 1.171973 2.0554 1.5262 5.1079 1.0585 0.3802 
function after (+  0.0047) ( -  0.0246) ( -  0.0443) (+  0.0586) (+0.0020) 
macroiteration 
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Table 3 contains the expectation values of the same operators as above, in 
different stages of perfection to show the relative order of magnitude of the different 
contributions. The wavefunctions are 

(1) SCF-determinant, 
(2) SCF-determinant and DSC's, 
(3) SCF-determinant and optimized SSC ~ (Brueckner correction), 
(4) wavefunction of Table 1 without MI, i.e. CI with SCF-determinant, DSC's 

and ~ ,  
(5) contributions of (2) and (3) simply added to the SCF-result, 
(6) full MI-wavefunction of Table 1. 
The results of Table 3 show that the MI-treatment does not improve the values 

of (4) considerably - the same holds for the energy - ,  and further that the changes 
caused by admixing the DSC's and the Brueckner correction are to a good degree 
additive. 

To answer the question whether the SCF- or the Brueckner-determinant 
yields better expectation values of one-electron operators we have to distinguish 
two cases: 

(a) The contributions of the DSC's and of the Brueckner correction r to the 
expectation value have more or less the same magnitude, but different signs (or 
they are both small). In this case the two corrections add up to about zero and the 
SCF-determinant gives already a good result. Examples in Table 3: (x2) ,  ( F ) .  

(b) The two corrections have the same sign or they have different signs and 
rather different magnitude. Here the SCF-function is no longer a good approxi- 
mation for calculating expectation values. Examples: (yZ), (rz), (Q). 

As can also be seen in Table 3 generally neither the correction due to the DSC's 
nor  the Brueckner correction can be neglected; they contribute both up to 3 % 
to the expectation values. Since different operators can behave differently and 
one does not know signs and magnitudes of the corrections in advance, one has to 
calculate (or to estimate) both to ensure that the SCF-values are good not only 
by chance. 

In agreement with Larsson [18] we can conclude by stating that generally the 
Brueckner-determinant yields more accurate expectation values of one-electron 
operators than the SCF-determinant. This can be hidden if the corrections due to 
the DSC's and to 4~x are accidentally of the same magnitude and of different sign, 
but such a behaviour cannot be expected in advance. 

4. The H 2 Molecule at Large Internuclear Separations 

It is well known that the SCF-method fails to describe the behaviour of the 
H2 potential energy curve at large internuclear distances, since the system of two 
H-atoms changes from a closed-shell state at equilibrium distance R = R o = 1.4 a o 
to an open-shell one for R - * ~ .  For  R = R o the one-determinantal SCF-wave- 
function 41 = [lag la---~[ is a good approximation of the exact wavefunction ~ and 
a good starting point for the CI. For  R ~ co this configuration becomes degenerate 
with ~2 = ]la,  l~ul, therefore a wavefunction containing at least these two deter- 
minants is necessary to get the correct behaviour of the potential energy curve for 
large distances. 
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Since the coefficient of ~2 changes from about  - 0 . 1  at R o (see Sect. 3) to 
- 1 / ~  at R ~ o% its influence backwards on ~1 increases and it becomes more and 
more necessary to change from the SCF-orbital  to the first NO. This behaviour 
is typical for non-dynamical  or degeneracy-type correlation [13]; other examples 
are Lie at large internuclear separations [20, 23] or CH 2 in its lowest 1A 1 state for 
nearly linear geometry [37, 38]. 

With our MI- t rea tment  it is very easy to account for this behaviour. F rom the 
numerical point of view the situation for large distances beco~aes even more 
favourable than for small ones (see Sect. 3), because all higher NO's  - except for 
lo- 0 and l a ,  - become more and more unimportant,  so we can go through all the 
MI-block with only the two configurations ~1 and ~2. These two contain only 
a-type orbitals, so we can limit our basis for the MI-par t  of the calculation to 
a-type basis functions. 

We calculated the potential energy curve for H 2 in the range from R = 1.4 a o 
to R = 10.0 a o with a Gaussian basis set containing for each a tom a 6s-Huzinaga 
basis [39] (contracted to 4 groups) augmented by three p-groups (exponents 
1., 0.28, 0.08) in all three directions. The p~-group with the exponent 0.28 was 
uncoupled, so that our complete basis consisted of 48 Gaussian lobe functions 
contracted to 16a, 6roy and 6re z groups. For  R = R o this basis is poorer than the 
one used in Sect. 3, for large R it becomes rather good, the energy of two independ- 
ent H-a toms calculated with this basis is -0.999881 a.u. [39]. 

Before we present the whole potential energy curve we pick out two of its 
points to show how differently the MI-procedure works in the two limiting cases 
where 

a) c 1 ~ 1, all Ic~l, e > 1, very small, i.e. for R ~ Ro, 

b) Iq[ ~ Ic21 ,-~ 1 / ~ ,  all [c,I, c~ > 2, very small, i.e. for large R. 

We have chosen the points R = Ro = 1.4ao and R = 5.0% and summarize 
some results in Table 4. In both calculations only the I l a  u ~ configuration is 

Tab le  4. M I - p r o c e d u r e  for H 2 at  R = 1.4a o and  R = 5.0a o 

R = 1.4 R = 5.0 

Wi t hou t  M I  

First  M I  

Las t  M I  

After M I  

E I = E s c  r - 1 . 1 3 3 1 3 5  -0 .8 5 9 0 5 1  

E 2 - 1 . 1 5 1 3 9 0  - 0 . 9 8 7 6 3 5  

E13 - 1 . 1 7 0 8 4 2  - 0 . 9 8 8 8 2 6  

A E  a - 0 . 0 0 0 2 8 2  - 0 . 0 1 3 5 3 4  

c a 0.015337 0.146339 

E 1 - 1.132842 - 0 . 8 4 7 5 4 7  

E 2 - 1 . 1 5 1 6 6 7  - 1 . 0 0 1 5 1 5  

N u m b e r  of  M I  2 5 

E 1 - 1.132851 - 0 . 8 3 6 5 3 4  

E 2 - 1.151667 - 1.002728 

E13 - 1.170950 - 1 . 0 0 3 3 8 7  
c I 0.990987 0.793303 

c 2 - 0.100458 - 0 . 6 0 8 3 4 9  

All energies in a.u. 

12 Theoret. china. Acta (Berl.) Vol. 24 
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included in the MI-treatment which is completely sufficient for R = 5.0ao, but 
leads to a small error for R = Ro, as will be shown later. 

Because of this simplification of the MI-treatment the results for R = Ro do 
not agree completely with those of our former calculation (Sect. 3). A E~, cA, the 
increase in E 1 and decrease in E 2 a r e  much larger in Table 4 than in Table 1. But 
all these quantities are very small, the gain in the total energy E13 after MI is about 
0.0001 a.u. in both calculations and can be neglected in comparison with the still 
remaining error of 0.0035 a.u. For  R = 5.0 a o the situation is completely different: 
A E~ and c~ are large, the decrease in E2 and E~3 cannot be neglected. Most of the 
energy is gained in the first MI, to reach self-consistency to six figures in the energy 
five macroiterations are necessary. But because the full basis - including the 
n-orbitals - is needed only for Ea3 and not in the SCF- and MI-steps, the computer 
time necessary for the MI-step is quite small. (For our basis we needed 10 sec for 
the evaluation of the integrals, 6 sec for the SCF-calculation, 3 sec for each MI, 
and 35 sec for the final determination of the higher NO's and the CI to calculate 
E13, all for an IBM 360/85.) 

Table 5 contains our results for the potential energy curve of H 2. For  nine 
values of R from R = R o to R = 10.0a o we have tabulated the energies El, E2, and 
E13 , calculated in three steps of increasing accuracy, namely" 

a) standard CI with doubly substituted NO-configurations, using the approxi- 
mation Z~ = (P~ (first NO = SCF-orbital), i.e. without MI-step; 

b) after determination of the first NO XI, i.e. after MI-step, only one DSC is 
incorporated in the MI-block; 

c) after determination of X~, but the four most important  DSC's incorporated 
in the MI-block. 

To enable comparison we have included in Table 5 the results of the "double 
configuration SCF" (DCSCF)calculation of Bowman, Hirschfelder, and Wahl [21] 
which must be compared with o u r  E 2 of calculation b), and the nearly exact 
potential energy curve of Kolos and Wolniewicz [27]. 

Comparing these different calculations we come to the following conclusions: 
1. Neither Esc v nor E13 of calculation a) approaches the correct limit of two 

separate H atoms in their ground states (in our basis -0.999881 a.u.) for R--,oo. 
Thus, the incorrect asymptotic behaviour of the SCF-energy is not fully balanced 
by the CI with only DSC's and the approximation Xa = ~o~. 

2. After the determination of the first NO (MI-block in b) and c)) the correct 
behaviour of E 2 and Et3 for large R is obtained. For  R--+ oo the difference between 
our calculations and those of Kolos and Wolniewicz [27] or Bowman, Hirsch- 
felder and Wahl [21] are only due to the deficiency of our Gaussian basis. For  
small R our results are poorer, because we did not optimize our basis to give a 
good description of the bonding region. 

3. For  large R the difference between E~3 and E 2 should be equal to the 
London dispersion energy [40]. Its leading term is - 6 . 5  R - 6  a .u .  [41, 42], while 
we got - 0.000007 a.u. for R = 10.0 a o. 

4. The differences in E 2 and E13 between the two calculations b) and c) are 
rather small, but noticeable for R = Ro, they become smaller for increasing R, and 
are less than 0.000001 a.u. for R __> 6.0 a o. (Therefore we did not perform the much 
more time consuming calculation c) for R > 6.0 a o.) That is due to the fact that the 
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coefficients c3, c4, c 5 of the configurations ~3, ~4, and ~5 - being about - 0 . 0 5  at 
R = R 0 (compare Table 1) - decrease very rapidly with increasing R, whereas c 2 
increases from about - 0 . 1  at R = R o to - 1/V2 for R o o e .  

Thus, we can conclude by stating that our MI-treatment to determine the first 
NO enables us to get rather good results even in unfavourable cases, when the 
CI-coefficients of one or more excited configurations are large. Especially, the 
behaviour of potential energy curves can be obtained correctly. This is of special 
importance for the interaction of atoms or molecules at large internuclear distances. 
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